Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.102
1.
Nat Commun ; 15(1): 3890, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719850

Shigella flexneri is a Gram-negative bacterium causing severe bloody dysentery. Its pathogenesis is largely dictated by a plasmid-encoded type III secretion system (T3SS) and its associated effectors. Among these, the effector OspG has been shown to bind to the ubiquitin conjugation machinery (E2~Ub) to activate its kinase activity. However, the cellular targets of OspG remain elusive despite years of extensive efforts. Here we show by unbiased phosphoproteomics that a major target of OspG is CAND1, a regulatory protein controlling the assembly of cullin-RING ubiquitin ligases (CRLs). CAND1 phosphorylation weakens its interaction with cullins, which is expected to impact a large panel of CRL E3s. Indeed, global ubiquitome profiling reveals marked changes in the ubiquitination landscape when OspG is introduced. Notably, OspG promotes ubiquitination of a class of cytoskeletal proteins called septins, thereby inhibiting formation of cage-like structures encircling cytosolic bacteria. Overall, we demonstrate that pathogens have evolved an elaborate strategy to modulate host ubiquitin signaling to evade septin-cage entrapment.


Bacterial Proteins , Septins , Shigella flexneri , Signal Transduction , Ubiquitin , Ubiquitination , Shigella flexneri/metabolism , Shigella flexneri/pathogenicity , Septins/metabolism , Septins/genetics , Humans , Ubiquitin/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phosphorylation , Host-Pathogen Interactions , HeLa Cells , Cullin Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HEK293 Cells , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/metabolism
2.
Front Microbiol ; 15: 1387222, 2024.
Article En | MEDLINE | ID: mdl-38741732

Abiotic stresses can increase the total fatty acid (TFA) and astaxanthin accumulation in microalgae. However, it remains unknown whether a unified signal transduction mechanism exists under different stresses. This study explored the link between nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) and the accumulation of fatty acids and astaxanthin in Chromochloris zofingiensis under three abiotic stresses. Results showed significant increases in fatty acid, astaxanthin, and ROS levels under nitrogen deficiency, phosphorus deficiency, and high-salinity stress. The introduction of the NADPH oxidase inhibitor diphenyleneiodonium (DPI) decreased the content of these components. This underscores the pivotal role of NADPH oxidase-derived ROS in the accumulation of fatty acid and astaxanthin under abiotic stress. Analysis of transcriptomes across three conditions following DPI addition revealed 1,445 shared differentially expressed genes (DEGs). Enrichment analysis revealed that biotin, betalain, thiamine, and glucosinolate may be important in stress responses. The heatmap demonstrated that DPI notably suppressed gene expression in the fatty acid and carotenoid biosynthesis pathways. Our findings underscore the pivotal role of NADPH oxidase-derived ROS in the accumulation of fatty acid and astaxanthin under abiotic stresses.

3.
Curr Med Sci ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38748371

OBJECTIVE: Sepsis is considered a major cause of health loss in children and had high mortality and morbidity. Currently, there is no reliable model for predicting the prognosis of pediatric patients with sepsis. This study aimed to analyze the clinical characteristics of sepsis in children and assess the risk factors associated with poor prognosis in pediatric sepsis patients to identify timely interventions and improve their outcomes. METHODS: This study analyzed the clinical indicators and laboratory results of septic patients hospitalized in the Pediatric Intensive Care Unit of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China, from January 1, 2019, to December 31, 2021. Risk factors for sepsis were identified by logistic regression analyses. RESULTS: A total of 355 children with sepsis were enrolled, with 333 children (93.8%) in the good prognosis group, and 22 children (6.2%) in the poor prognosis group. Among them, there were 255 patients (71.8%) in the sepsis group, and 100 patients (28.2%) in the severe sepsis group. The length of hospital stay in the poor prognosis group was longer than that in the good prognosis group (P<0.01). The levels of interleukin 1ß (IL-1ß) in the poor prognosis group were higher than those in the good prognosis group (P>0.05), and the platelet (PLT), albumin (ALB), and hemoglobin (Hb) levels were lower in the poor prognosis group (P<0.01). The IL-8 levels in the severe sepsis group were higher than those in the sepsis group (P<0.05). Multiple logistic regression analysis suggested that lower Hb levels, ALB levels, peak PLT counts, and higher IL-1ß levels were independent risk factors for poor prognosis in children with sepsis. CONCLUSION: Lower Hb, ALB, and PLT counts and elevated IL-1ß are independent risk factors for poor prognosis in children with sepsis.

4.
J Infect ; : 106181, 2024 May 12.
Article En | MEDLINE | ID: mdl-38744376

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with high fatality rates. The blockade of pro-inflammatory cytokines presents a promising therapeutic strategy. METHODS: We conducted a randomized clinical trial at the 154th hospital, Xinyang, Henan Province. Eligible patients with severe SFTS disease were randomly assigned in a 1:2 ratio to receive either a single intravenous infusion of tocilizumab plus usual care; or usual care only. The primary outcome was the clinical status of death/survival at day 14, while secondary outcomes included improvement from baseline in liver and kidney damage and time required for hospital discharge. The efficacy of tocilizumab plus corticosteroid was compared to those receiving corticosteroid alone. The trial is registered with the Chinese Clinical Trial Registry website (ChiCTR2300076317). RESULTS: 63 eligible patients were assigned to the tocilizumab group and 126 to the control group. The addition of tocilizumab to usual care was associated with a reduced death rate (9.5%) compared to those received only usual care (23.0%), with an adjusted hazard ratio (aHR) of 0.37 (95% confidence interval [CI], 0.15 to 0.91, P=0.029). Combination therapy of tocilizumab and corticosteroids was associated with a significantly reduced fatality (aHR, 0.21; 95% CI, 0.08 to 0.56; P =0.002) compared to those receiving corticosteroid alone. CONCLUSIONS: A significant benefit of reducing fatality in severe SFTS patients was observed by using tocilizumab. A combined therapy of tocilizumab plus corticosteroids was recommended for the therapy of severe SFTS.

5.
Small ; : e2401159, 2024 May 08.
Article En | MEDLINE | ID: mdl-38716681

Defects can introduce atomic structural modulation and tailor performance of materials. Herein, it demonstrates that semiconductor WO3 with inert electrocatalytic behavior can be activated through defect-induced tensile strains. Structural characterizations reveal that when simply treated in Ar/H2 atmosphere, oxygen vacancies will generate in WO3 and cause defective structures. Stacking faults are found in defects, thus modulating electronic structure and transforming electrocatalytic-inert WO3 into highly active electrocatalysts. Density functional theory (DFT) calculations are performed to calculate *H adsorption energies on various WOx surfaces, revealing the oxygen vacancy composition and strain predicted to optimize the catalytic activity of hydrogen evolution reaction (HER). Such defective tungsten oxides can be integrated into commercial proton exchange membrane (PEM) electrolyser with comparable performance toward Pt-based PEM. This work demonstrates defective metal oxides as promising non-noble metal catalysts for commercial PEM green-hydrogen generation.

6.
Eur J Epidemiol ; 2024 May 04.
Article En | MEDLINE | ID: mdl-38703249

The Chinese keratoconus (CKC) cohort study is a population-based longitudinal prospective cohort study in the Chinese population involving a clinical database and biobanks. This ongoing study focuses on the prevention of KC progression and is the first to involve the effect of gene‒environment interactions on KC progression. The CKC cohort is hospital-based and dynamic and was established in Zhengzhou, China; KC patients (n = 1114) from a large geographical area were enrolled from January 2019 to June 2023, with a mean age of 22.23 years (6‒57 years). Demographic details, socioeconomic characteristics, lifestyle, disease history, surgical history, family history, and visual and social function data are being collected using questionnaires. General physical examination, eye examination, biological specimen collection, and first-degree relative data were collected and analyzed in the present study. The primary focus of the present study was placed on gene, environment and the effect of gene‒environment interactions on KC progression. The follow-up of the CKC cohort study is expected to include data collection at 3 months, 6 months, and 1 year after the initial examination and then at the annual follow-up examinations. The first follow-up of the CKC cohort study was recorded. A total of 918 patients completed the follow-up by June 1, 2023, with a response rate of 82.40%. Aside from the younger age of patients who were followed up, no significant differences were found between patients who were followed up and patients who were not.

7.
Sci Rep ; 14(1): 9376, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654043

This study aimed to develop and validate a nomogram model that includes clinical and laboratory indicators to predict the risk of metabolic-associated fatty liver disease (MAFLD) in young Chinese individuals. This study retrospectively analyzed a cohort of young population who underwent health examination from November 2018 to December 2021 at The Affiliated Hospital of Southwest Medical University in Luzhou City, Sichuan Province, China. We extracted the clinical and laboratory data of 43,040 subjects and randomized participants into the training and validation groups (7:3). Univariate logistic regression analysis, the least absolute shrinkage and selection operator regression, and multivariate logistic regression models identified significant variables independently associated with MAFLD. The predictive accuracy of the model was analyzed in the training and validation sets using area under the receiver operating characteristic (AUROC), calibration curves, and decision curve analysis. In this study, we identified nine predictors from 31 variables, including age, gender, body mass index, waist-to-hip ratio, alanine aminotransferase, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, uric acid, and smoking. The AUROC for the subjects in the training and validation groups was 0.874 and 0.875, respectively. The calibration curves show excellent accuracy of the nomogram. This nomogram which was based on demographic characteristics, lifestyle habits, anthropometrics, and laboratory data can visually and individually predict the risk of developing MAFLD. This nomogram is a quick and effective screening tool for assessing the risk of MAFLD in younger populations and identifying individuals at high risk of MAFLD, thereby contributing to the improvement of MAFLD management.


Nomograms , Humans , Female , Male , Adult , Retrospective Studies , Risk Factors , China/epidemiology , Young Adult , ROC Curve , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/blood , Risk Assessment/methods
8.
World J Clin Cases ; 12(10): 1804-1809, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38660087

BACKGROUND: Although percutaneous vertebral augmentation (PVA) is a commonly used procedure for treating vertebral compression fracture (VCF), the risk of vertebral refracture should be considered. Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disease of mineral and bone metabolism. It is associated with an increased risk of fracture. Few studies have reported the use of PVA in patients with CKD-MBD. We herein report a rare case wherein the cemented vertebra and the adjacent vertebra refractured simultaneously in a CKD-MBD patient after PVA. CASE SUMMARY: A 74-year-old man suffered from low back pain after taking a fall about 3 wk ago. According to physical examination, imaging and laboratory findings, diagnoses of T12 VCF, CKD-MBD, and chronic kidney disease stage 5 were established. He then received percutaneous vertebroplasty at T12 vertebra. Fourteen weeks later, he presented with T12 and L1 vertebral refractures caused by lumbar sprain. Once again, he was given PVA which was optimized for the refractured vertebrae. Although the short-term postoperative effect was satisfactory, he reported chronic low back pain again at the 3-month follow-up. CONCLUSION: It is necessary that patients with CKD-MBD who have received PVA are aware of the adverse effects of CKD-MBD. It may increase the risk of vertebral refracture. Furthermore, the PVA surgical technique needs to be optimized according to the condition of the patient. The medium- and long-term effects of PVA remain uncertain in patients with CKD-MBD.

9.
Nutr Hosp ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38666347

PURPOSE: this study investigated the effect of sunlight on vitamin D and hemoglobin levels among the residents of Ningbo, China. The impact of gender, age, and season on vitamin D and hemoglobin levels was also explored. METHODS: a total of 8,481 research subjects, including 5,146 men and 3,335 women, who were permanent residents of Ningbo and received health checkups at Ningbo Second Hospital, were included in the study. Ningbo City climate bulletin data from 2019 to 2022 was also included. RESULTS: the study subjects received an average of 132.20 ± 40.05 h of sunlight exposure per month and had average vitamin D levels of 19.63 ± 6.61 ng/ml. Hemoglobin levels were adequate in 85.4 % of the participants and deficient in 14.6 %. Sunlight exposure correlated positively with vitamin D and negatively with hemoglobin levels. Regression analysis indicated that gender, age, and season affected vitamin D and hemoglobin levels to different degrees. CONCLUSION: in Ningbo, vitamin D deficiency was common in adults while hemoglobin levels were mostly normal. The amount of sunlight exposure had a significant effect on vitamin D and hemoglobin levels and this relationship was impacted by gender, age, and season.

10.
Toxicon ; 243: 107734, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38670497

Beauvericin (BEA) is a newly identified mycotoxin produced by various Fusarium species, and its contamination in food and animal feed is widespread globally. This mycotoxin demonstrates cytotoxic effects by inducing oxidative stress in multiple models. Furthermore, evidence indicates that BEA possesses diverse toxic activities, making it a promising candidate for toxicological research. Recent studies have highlighted the ability of BEA to traverse the blood-brain barrier, suggesting its potential neurotoxicity. However, limited information is available regarding the neurotoxic effects of BEA on human astrocytes. Therefore, this study aimed to assess the neurotoxic effects of BEA on the Gibco® Human Astrocyte (GHA) cell line and elucidate the underlying mechanisms. Additionally, the study aimed to investigate the protective effects of the antioxidant N-acetylcysteine (NAC) against BEA-induced toxicity. The data show that exposure to BEA within the 2.5-15 µM concentration range resulted in concentration-dependent cytotoxicity. BEA-treated cells exhibited significantly increased levels of reactive oxygen species (ROS), while intracellular glutathione (GSH) content was significantly reduced. Western blot analysis of cells treated with BEA revealed altered protein levels of Bax, cleaved caspase-9, and caspase-3, along with an increased Bax/Bcl-2 ratio, indicating the induction of apoptosis. Additionally, BEA exposure triggered antioxidant responses, as evidenced by increased protein expression of Nrf2, HO-1, and NQO1. Significantly, pretreatment with NAC partially attenuated the significant toxic effects of BEA. In conclusion, our findings suggest that BEA-induced cytotoxicity in GHA cells involves oxidative stress-associated apoptosis. Furthermore, NAC demonstrates potential as a protective agent against BEA-induced oxidative damage.

11.
Adv Mater ; : e2403403, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38631689

Efficient and robust n-i-p perovskite solar cells necessitate superior organic hole-transport materials with both mechanical and electronic prowess. Deciphering the structure-property relationship of these materials is crucial for practical perovskite solar cell applications. Through direct arylation, two high glass transition temperature molecular semiconductors, DBC-ETPA (202 °C) and TPE-ETPA (180 °C) are synthesized, using dibenzo[g,p]chrysene (DBC) and 1,1,2,2-tetraphenylethene (TPE) tetrabromides with triphenylene-ethylenedioxythiophene-dimethoxytriphenylamine (ETPA). In comparison to spiro-OMeTAD, both semiconductors exhibit shallower HOMO energy levels, resulting in increased hole densities (generated by air oxidation doping) and accelerated hole extraction from photoexcited perovskite. Experimental and theoretical studies highlight the more rigid DBC core, enhancing hole mobility due to reduced reorganization energy and lower energy disorder. Importantly, DBC-ETPA possesses a higher cohesive energy density, leading to lower ion diffusion coefficients and higher Young's moduli. Leveraging these attributes, DBC-ETPA is employed as the primary hole-transport layer component, yielding perovskite solar cells with an average efficiency of 24.5%, surpassing spiro-OMeTAD reference cells (24.0%). Furthermore, DBC-ETPA-based cells exhibit superior operational stability and 85 °C thermal storage stability.

12.
Adv Sci (Weinh) ; : e2309639, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682443

Targeting "undruggable" targets with intrinsically disordered structures is of great significance for the treatment of disease. The transcription factor c-Myc controls global gene expression and is an attractive therapeutic target for multiple types of cancers. However, due to the lack of defined ligand binding pockets, targeted c-Myc have thus far been unsuccessful. Herein, to address the dilemma of lacking ligands, an efficient and high throughput aptamer screening strategy is established, named polystyrene microwell plate-based systematic evolution of ligands by exponential enrichment (microwell-SELEX), and identify the specific aptamer (MA9C1) against c-Myc. The multifunctional aptamer-based Proteolysis Targeting Chimeras (PROTAC) for proteolysis of the c-Myc (ProMyc) is developed using the aptamer MA9C1 as the ligand. ProMyc not only significantly degrades c-Myc by the ubiquitin-proteasome system, but also reduces the Max protein, synergistically inhibiting c-Myc transcriptional activity. Combination of the artificial cyclization and anti-PD-L1 aptamer (PA1)-based delivery system, circular PA1-ProMyc chimeras achieve tumor regression in the xenograft tumor model, laying a solid foundation for the development of efficacious c-Myc degrader for the clinic. Therefore, this aptamer-based degrader provides an invaluable potential degrader in drug discovery and anti-tumor therapy, offering a promising degrader to overcome the challenge of targeting intractable targets.

13.
Cell Rep ; 43(4): 114014, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38568807

The transmembrane channel-like (TMC) protein family comprises eight members, with TMC1 and TMC2 being extensively studied. This study demonstrates substantial co-expression of TMC7 with the mechanosensitive channel Piezo2 in somatosensory neurons. Genetic deletion of TMC7 in primary sensory ganglia neurons in vivo enhances sensitivity in both physiological and pathological mechanosensory transduction. This deletion leads to an increase in proportion of rapidly adapting (RA) currents conducted by Piezo2 in dorsal root ganglion (DRG) neurons and accelerates RA deactivation kinetics. In HEK293 cells expressing both proteins, TMC7 significantly suppresses the current amplitudes of co-expressed Piezo2. Our findings reveal that TMC7 and Piezo2 exhibit physical interactions, and both proteins also physically interact with cytoskeletal ß-actin. We hypothesize that TMC7 functions as an inhibitory modulator of Piezo2 in DRG neurons, either through direct inhibition or by disrupting the transmission of mechanical forces from the cytoskeleton to the channel.


Ganglia, Spinal , Ion Channels , Mechanotransduction, Cellular , Sensory Receptor Cells , Humans , Sensory Receptor Cells/metabolism , Animals , Ion Channels/metabolism , Ion Channels/genetics , Ganglia, Spinal/metabolism , HEK293 Cells , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Actins/metabolism
14.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38602742

Prior investigations have established that the manipulation of neural activity has the potential to influence both rapid eye movement and non-rapid eye movement sleep. Low-intensity retinal ultrasound stimulation has shown effectiveness in the modulation of neural activity. Nevertheless, the specific effects of retinal ultrasound stimulation on rapid eye movement and non-rapid eye movement sleep, as well as its potential to enhance overall sleep quality, remain to be elucidated. Here, we found that: In healthy mice, retinal ultrasound stimulation: (i) reduced total sleep time and non-rapid eye movement sleep ratio; (ii) changed relative power and sample entropy of the delta (0.5-4 Hz) in non-rapid eye movement sleep; and (iii) enhanced relative power of the theta (4-8 Hz) and reduced theta-gamma coupling strength in rapid eye movement sleep. In Alzheimer's disease mice with sleep disturbances, retinal ultrasound stimulation: (i) reduced the total sleep time; (ii) altered the relative power of the gamma band during rapid eye movement sleep; and (iii) enhanced the coupling strength of delta-gamma in non-rapid eye movement sleep and weakened the coupling strength of theta-fast gamma. The results indicate that retinal ultrasound stimulation can modulate rapid eye movement and non-rapid eye movement-related neural activity; however, it is not beneficial to the sleep quality of healthy and Alzheimer's disease mice.


Alzheimer Disease , Animals , Mice , Entropy , Health Status , Light , Sleep Quality
16.
Adv Sci (Weinh) ; 11(18): e2307834, 2024 May.
Article En | MEDLINE | ID: mdl-38460155

Targeting cancer-specific metabolic processes is a promising therapeutic strategy. Here, this work uses a compound library that directly inhibits metabolic enzymes to screen the potential metabolic targets in lung adenocarcinoma (LUAD). SHIN1, the specific inhibitor of serine hydroxymethyltransferase 1/2 (SHMT1/2), has a highly specific inhibitory effect on LUAD cells, and this effect depends mainly on the overexpression of SHMT2. This work clarifies that mitogen-activated protein kinase 1 (MAPK1)-mediated phosphorylation at Ser90 is the key mechanism underlying SHMT2 upregulation in LUAD and that this phosphorylation stabilizes SHMT2 by reducing STIP1 homology and U-box containing protein 1 (STUB1)-mediated ubiquitination and degradation. SHMT2-Ser90 dephosphorylation decreases S-adenosylmethionine levels in LUAD cells, resulting in reduced N6-methyladenosine (m6A) levels in global RNAs without affecting total protein or DNA methylation. Methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-Seq) analyses further demonstrate that SHMT2-Ser90 dephosphorylation accelerates the RNA degradation of oncogenic genes by reducing m6A modification, leading to the inhibition of tumorigenesis. Overall, this study elucidates a new regulatory mechanism of SHMT2 during oncogenesis and provides a theoretical basis for targeting SHMT2 as a therapeutic target in LUAD.


Adenocarcinoma of Lung , Adenosine , Carcinogenesis , Glycine Hydroxymethyltransferase , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Phosphorylation/genetics , Mice , Adenosine/analogs & derivatives , Adenosine/metabolism , Adenosine/genetics , Animals , Cell Line, Tumor , Disease Models, Animal
18.
Neurosci Bull ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38528256

Epilepsy is a neural network disorder caused by uncontrolled neuronal hyperexcitability induced by an imbalance between excitatory and inhibitory networks. Abnormal synaptogenesis plays a vital role in the formation of overexcited networks. Recent evidence has confirmed that thrombospondin-1 (TSP-1), mainly secreted by astrocytes, is a critical cytokine that regulates synaptogenesis during epileptogenesis. Furthermore, numerous studies have reported that TSP-1 is also involved in other processes, such as angiogenesis, neuroinflammation, and regulation of Ca2+ homeostasis, which are closely associated with the occurrence and development of epilepsy. In this review, we summarize the potential contributions of TSP-1 to epilepsy development.

19.
ChemMedChem ; : e202400060, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38443744

Copper (Cu), a crucial trace element in physiological processes, has garnered significant interest for its involvement in cancer progression and potential therapeutic applications. The regulation of cellular copper levels is essential for maintaining copper homeostasis, as imbalances can lead to toxicity and cell death. The development of drugs that target copper homeostasis has emerged as a promising strategy for anticancer treatment, with a particular focus on copper chelators, copper ionophores, and novel copper complexes. Recent research has also investigated the potential of copper complexes in cancer therapy.

20.
Insect Sci ; 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38516802

Bumblebees play an important ecological economic role as pollinators in nature and agriculture. For reasons of biosecurity, many countries promote the cultivation of native bumblebee species for crop pollination instead of importing "alien" species. In South China, a few bumblebee species are considered useful in this way, particularly, Bombus atripes, Bombus bicoloratus and Bombus breviceps. However, whether they are suitable for artificial rearing and forming healthy colonies for pollination, remains unknown. In this project, queens from the 3 native species of Guizhou Province were collected and colonies were started under standardized conditions. The colonies were scored based on 19 parameters, including the stage of colony development, number and weight of offspring, and diet consumed. The data revealed that B. breviceps had the best performance, produced more workers and consumed the smallest diet. Next, we performed 16S rDNA sequencing of the bacterial communities found in the guts of offspring workers, and then a correlation analysis between colony performance and gut bacteria was conducted. Here, B. breviceps showed the highest diversity in gut bacterial composition, dominated by the bacteria Gilliamella, Snodgrassella, Enterobacter, and Lactobacillus Firm5. The higher the abundance of Snodgrassella, the better the performance of the colony in the foundation stage, and later Lactobacillus Firm5, Apibacter and Bifidobacterium were beneficial during the stages of rapid growth and colony decline. Although we do not understand all of the interactions yet, these correlations explain why B. breviceps demonstrated better colony performance. Our data provide valuable information for breeding local Bombus species and will contribute to developing strong colonies for crop pollination.

...